Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-492178

RESUMO

As of June 2022, the GISAID database contains more than one million SARS-CoV-2 genomes, including several thousand nucleotide sequences for the most common variants such as delta or omicron. These SARS-CoV-2 strains have been collected from patients around the world since the beginning of the pandemic. We start by assessing the similarity of all pairs of nucleotide sequences using the Jaccard index and principal component analysis. As shown previously in the literature, an unsupervised cluster analysis applied to the SARS-CoV-2 genomes results in clusters of sequences according to certain characteristics such as their strain or their clade. Importantly, we observe that nucleotide sequences of common variants are often outliers in clusters of sequences stemming from variants identified earlier on during the pandemic. Motivated by this finding, we are interested in applying outlier detection to nucleotide sequences. We demonstrate that nucleotide sequences of common variants (such as alpha, delta, or omicron) can be identified solely based on a statistical outlier criterion. We argue that outlier detection might be a useful surveillance tool to identify emerging variants in real time as the pandemic progresses.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474469

RESUMO

The GISAID database contains more than 1,000,000 SARS-CoV-2 genomes, including sequences of the recently discovered SARS-CoV-2 omicron variant and of prior SARS-CoV-2 strains that have been collected from patients around the world since the beginning of the pandemic. We applied unsupervised cluster analysis to the SARS-CoV-2 genomes, assessing their similarity at a genome-wide level based on the Jaccard index and principal component analysis. Our analysis results show that the omicron variant sequences are most similar to sequences that have been submitted early in the pandemic around January 2020. Furthermore, the omicron variants in GISAID are spread across the entire range of the first principal component, suggesting that the strain has been in circulation for some time. This observation supports a long-term infection hypothesis as the omicron strain origin.

3.
Frauke Degenhardt; David Ellinghaus; Simonas Juzenas; Jon Lerga-Jaso; Mareike Wendorff; Douglas Maya-Miles; Florian Uellendahl-Werth; Hesham ElAbd; Malte Christoph Ruehlemann; Jatin Arora; Onur Oezer; Ole Bernt Lenning; Ronny Myhre; May Sissel Vadla; Eike Matthias Wacker; Lars Wienbrandt; Aaron Blandino Ortiz; Adolfo de Salazar; Adolfo Garrido Chercoles; Adriana Palom; Agustin Ruiz; Alba-Estela Garcia-Fernandez; Albert Blanco-Grau; Alberto Mantovani; Alberto Zanella; Aleksander Rygh Holten; Alena Mayer; Alessandra Bandera; Alessandro Cherubini; Alessandro Protti; Alessio Aghemo; Alessio Gerussi; Alfredo Ramirez; Alice Braun; Almut Nebel; Ana Barreira; Ana Lleo; Ana Teles; Anders Kildal; Andrea Biondi; Andrea Caballero-Garralda; Andrea Ganna; Andrea Gori; Andreas Glueck; Andreas Lind; Anja Tanck; Anke Hinney; Anna Carreras Carreras Nolla; Anna Ludovica Fracanzani; Anna Peschuck; Annalisa Cavallero; Anne Ma Dyrhol-Riise; Antonella Ruello; Antonio Julia; Antonio Muscatello; Antonio Pesenti; Antonio Voza; Ariadna Rando-Segura; Aurora Solier; Axel Schmidt; Beatriz Cortes; Beatriz Mateos; Beatriz Nafria-Jimenez; Benedikt Schaefer; Bjoern Jensen; Carla Bellinghausen; Carlo Maj; Carlos Ferrando; Carmen de la Horra; Carmen Quereda; Carsten Skurk; Charlotte Thibeault; Chiara Scollo; Christian Herr; Christoph D Spinner; Christoph Gassner; Christoph Lange; Cinzia Hu; Cinzia Paccapelo; Clara Lehmann; Claudio Angelini; Claudio Cappadona; Clinton Azuure; Cristiana Bianco; Cristina Cea; Cristina Sancho; Dag Arne Lihaug Hoff; Daniela Galimberti; Daniele Prati; David Haschka; David Jimenez; David Pestana; David Toapanta; Eduardo Muniz-Diaz; Elena Azzolini; Elena Sandoval; Eleonora Binatti; Elio Scarpini; Elisa T Helbig; Elisabetta Casalone; Eloisa Urrechaga; Elvezia Maria Paraboschi; Emanuele Pontali; Enric Reverter; Enrique J Calderon; Enrique Navas; Erik Solligard; Ernesto Contro; Eunate Arana-Arri; Fatima Aziz; Federico Garcia; Felix Garcia Sanchez; Ferruccio Ceriotti; Filippo Martinelli-Boneschi; Flora Peyvandi; Florian Kurth; Francesco Blasi; Francesco Malvestiti; Francisco J Medrano; Francisco Mesonero; Francisco Rodriguez-Frias; Frank Hanses; Fredrik Mueller; Georg Hemmrich-Stanisak; Giacomo Bellani; Giacomo Grasselli; Gianni Pezzoli; Giorgio Costantino; Giovanni Albano; Giulia Cardamone; Giuseppe Bellelli; Giuseppe Citerio; Giuseppe Foti; Giuseppe Lamorte; Giuseppe Matullo; Guido Baselli; Hayato Kurihara; Holger Neb; Ilaria My; Ingo Kurth; Isabel Hernandez; Isabell Pink; Itziar de Rojas; Ivan Galvan-Femenia; Jan Cato Holter; Jan Egil Afset; Jan Heyckendorf; Jan Kaessens; Jan Kristian Damas; Jan Rybniker; Janine Altmueller; Javier Ampuero; Javier Martin; Jeanette Erdmann; Jesus M Banales; Joan Ramon Badia; Joaquin Dopazo; Jochen Schneider; Jonas Bergan; Jordi Barretina; Joern Walter; Jose Hernandez Quero; Josune Goikoetxea; Juan Delgado; Juan M Guerrero; Julia Fazaal; Julia Kraft; Julia Schroeder; Kari Risnes; Karina Banasik; Karl Erik Mueller; Karoline I Gaede; Koldo Garcia-Etxebarria; Kristian Tonby; Lars Heggelund; Laura Izquierdo-Sanchez; Laura Rachele Bettini; Lauro Sumoy; Leif Erik Sander; Lena J Lippert; Leonardo Terranova; Lindokuhle Nkambule; Lisa Knopp; Lise Tuset Gustad; Lucia Garbarino; Luigi Santoro; Luis Tellez; Luisa Roade; Mahnoosh Ostadreza; Maider Intxausti; Manolis Kogevinas; Mar Riveiro-Barciela; Marco Schaefer; Mari EK Niemi; Maria A Gutierrez-Stampa; Maria Carrabba; Maria E Figuera Basso; Maria Grazia Valsecchi; Maria Hernandez-Tejero; Maria JGT Vehreschild; Maria Manunta; Marialbert Acosta-Herrera; Mariella D'Angio; Marina Baldini; Marina Cazzaniga; Marit M Grimsrud; Markus Cornberg; Markus M Noethen; Marta Marquie; Massimo Castoldi; Mattia Cordioli; Maurizio Cecconi; Mauro D'Amato; Max Augustin; Melissa Tomasi; Merce Boada; Michael Dreher; Michael J Seilmaier; Michael Joannidis; Michael Wittig; Michela Mazzocco; Michele Ciccarelli; Miguel Rodriguez-Gandia; Monica Bocciolone; Monica Miozzo; Natale Imaz-Ayo; Natalia Blay; Natalia Chueca; Nicola Montano; Nicole Braun; Nicole Ludwig; Nikolaus Marx; Nilda Martinez; Oliver A Cornely; Oliver Witzke; Orazio Palmieri; Paola Faverio; Paoletta Preatoni; Paolo Bonfanti; Paolo Omodei; Paolo Tentorio; Pedro Castro; Pedro M Rodrigues; Pedro Pablo Espana; Per Hoffmann; Philip Rosenstiel; Philipp Schommers; Phillip Suwalski; Raul de Pablo; Ricard Ferrer; Robert Bals; Roberta Gualtierotti; Rocio Gallego-Duran; Rosa Nieto; Rossana Carpani; Ruben Morilla; Salvatore Badalamenti; Sammra Haider; Sandra Ciesek; Sandra May; Sara Bombace; Sara Marsal; Sara Pigazzini; Sebastian Klein; Serena Pelusi; Sibylle Wilfling; Silvano Bosari; Sonja Volland; Soren Brunak; Soumya Raychaudhuri; Stefan Schreiber; Stefanie Heilmann-Heimbach; Stefano Aliberti; Stephan Ripke; Susanne Dudman; Tanja Wesse; Tenghao Zheng; Thomas Bahmer; Thomas Eggermann; Thomas Illig; Thorsten Brenner; Tomas Pumarola; Torsten Feldt; Trine Folseraas; Trinidad Gonzalez Cejudo; Ulf Landmesser; Ulrike Protzer; Ute Hehr; Valeria Rimoldi; Valter Monzani; Vegard Skogen; Verena Keitel; Verena Kopfnagel; Vicente Friaza; Victor Andrade; Victor Moreno; Wolfgang Albrecht; Wolfgang Peter; Wolfgang Poller; Xavier Farre; Xiaoli Yi; Xiaomin Wang; Yascha Khodamoradi; Zehra Karadeniz; Anna Latiano; Siegfried Goerg; Petra Bacher; Philipp Koehler; Florian Tran; Heinz Zoller; Eva C Schulte; Bettina Heidecker; Kerstin U Ludwig; Javier Fernandez; Manuel Romero-Gomez; Agustin Albillos; Pietro Invernizzi; Maria Buti; Stefano Duga; Luis Bujanda; Johannes R Hov; Tobias L Lenz; Rosanna Asselta; Rafael de Cid; Luca Valenti; Tom Hemming Karlsen; Mario Caceres; Andre Franke; - COVICAT study group; - Covid-19 Aachen Study (COVAS); - Pa COVID-19 Study Group; - The Humanitas COVID-19 Task Force; - The Humanitas Gavazzeni COVID-19 Task Force; - Norwegian SARS-CoV-2 Study group.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260624

RESUMO

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic [~]0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-386714

RESUMO

BackgroundSARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Whole-genome sequencing (WGS) of the virus with death in SARS-CoV-2 patients is one potential method of early identification of highly pathogenic strains to target for containment. MethodsWe analyzed 7,548 single stranded RNA-genomes of SARS-CoV-2 patients in the GISAID database (Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017) and associated variants with reported patients health status from COVID-19, i.e. deceased versus non-deceased. We probed each locus of the single stranded RNA of the SARS-CoV-2 virus for direct association with host/patient mortality using a logistic regression. ResultsIn total, evaluating 29,891 loci of the viral genome for association with patient/host mortality, two loci, at 12,053bp and 25,088bp, achieved genome-wide significance (p-values of 4.09e-09 and 4.41e-23, respectively). ConclusionsMutations at 25,088bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Additionally, mutations at 12,053bp are within the ORF1ab gene, in a region encoding for the protein nsp7, which is necessary to form the RNA polymerase complex responsible for viral replication and transcription. Both mutations altered amino acid coding sequences, potentially imposing structural changes that could enhance viral infectivity and symptom severity, and may be important to consider as targets for therapeutic development. Identification of these highly significant associations, unlikely to occur by chance, may assist with COVID-19 early containment of strains that are potentially highly pathogenic.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20187369

RESUMO

The pandemic spread of the potentially life-threatening disease COVID-19 requires a thorough understanding of the longitudinal dynamics of host responses. Temporal resolution of cellular features associated with a severe disease trajectory will be a pre-requisite for finding disease outcome predictors. Here, we performed a longitudinal multi-omics study using a two-centre German cohort of 13 patients (from Cologne and Kiel, cohort 1). We analysed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. The results from single-cell and bulk transcriptome analyses were validated in two independent cohorts of COVID-19 patients from Bonn (18 patients, cohort 2) and Nijmegen (40 patients, cohort 3), respectively. We observed an increase of proliferating, activated plasmablasts in severe COVID-19, and show a distinct expression pattern related to a hyperactive cellular metabolism of these cells. We further identified a notable expansion of type I IFN-activated circulating megakaryocytes and their progenitors, indicative of emergency megakaryopoiesis, which was confirmed in cohort 2. These changes were accompanied by increased erythropoiesis in the critical phase of the disease with features of hypoxic signalling. Finally, projecting megakaryocyte- and erythroid cell-derived co-expression modules to longitudinal blood transcriptome samples from cohort 3 confirmed an association of early temporal changes of these features with fatal COVID-19 disease outcome. In sum, our longitudinal multi-omics study demonstrates distinct cellular and gene expression dynamics upon SARS-CoV-2 infection, which point to metabolic shifts of circulating immune cells, and reveals changes in megakaryocytes and increased erythropoiesis as important outcome indicators in severe COVID-19 patients.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-165936

RESUMO

Research efforts of the ongoing SARS-CoV-2 pandemic have focused on viral genome sequence analysis to understand how the virus spread across the globe. Here, we assess three recently identified SARS-CoV-2 genomes in Beijing from June 2020 and attempt to determine the origin of these genomes, made available in the GISAID database. The database contains fully or partially sequenced SARS-CoV-2 samples from laboratories around the world. Including the three new samples and excluding samples with missing annotations, we analyzed 7, 643 SARS-CoV-2 genomes. Using principal component analysis computed on a similarity matrix that compares all pairs of the SARS-CoV-2 nucleotide sequences at all loci simultaneously, using the Jaccard index, we find that the newly discovered virus genomes from Beijing are in a genetic cluster that consists mostly of cases from Europe and South(east) Asia. The sequences of the new cases are most related to virus genomes from a small number of cases from China (March 2020), cases from Europe (February to early May 2020), and cases from South(east) Asia (May to June 2020). These findings could suggest that the original cases of this genetic cluster originated from China in March 2020 and were re-introduced to China by transmissions from samples from South(east) Asia between April and June 2020.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-079061

RESUMO

Over 10,000 viral genome sequences of the SARS-CoV-2 virus have been made readily available during the ongoing coronavirus pandemic since the initial genome sequence of the virus was released on the open access Virological website (http://virological.org/) early on January 11. We utilize the published data on the single stranded RNAs of 11, 132 SARS-CoV-2 patients in the GISAID (Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017) database, which contains fully or partially sequenced SARS-CoV-2 samples from laboratories around the world. Among many important research questions which are currently being investigated, one aspect pertains to the genetic characterization/classification of the virus. We analyze data on the nucleotide sequencing of the virus and geographic information of a subset of 7, 640 SARS-CoV-2 patients without missing entries that are available in the GISAID database. Instead of modelling the mutation rate, applying phylogenetic tree approaches, etc., we here utilize a model-free clustering approach that compares the viruses at a genome-wide level. We apply principal component analysis to a similarity matrix that compares all pairs of these SARS-CoV-2 nucleotide sequences at all loci simultaneously, using the Jaccard index (Jaccard, 1901; Tan et al., 2005; Prokopenko et al., 2016; Schlauch et al., 2017). Our analysis results of the SARS-CoV-2 genome data illustrates the geographic and chronological progression of the virus, starting from the first cases that were observed in China to the current wave of cases in Europe and North America. This is in line with a phylogenetic analysis which we use to contrast our results. We also observe that, based on their sequence data, the SARS-CoV-2 viruses cluster in distinct genetic subgroups. It is the subject of ongoing research to examine whether the genetic subgroup could be related to diseases outcome and its potential implications for vaccine development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...